

Open Source and
the Choice to Cooperate

Brian Behlendorf
Apache Mozilla

CollabNet Subversion

Bootstrapping the Apache Project

● 1995, 8 Webmasters (Wired, IMDB, MIT, early ISPs) had a problem.

● National Center for Supercomputing Applications (NCSA) had
released a server, but it was not being maintained.

● We had “patches” to the server for performance, security,
functionality.

● We also were all on the HTTP working group of the Internet
Engineering Task Force, and wanted to see HTTP become and
remain an “open” platform.

● None of us wanted to become full-time web server developers.

● Apache thus started as a “fork” of the NCSA codebase.

● Why did it grow so fast?

● Features, but also flexibility and timing.

Apache's Growth

From Project to Foundation
➢ By 1998, 60% of the web was running on Apache

➢ IBM, Sun, and other corporations expressed interest.

➢ We realized we needed a way to balance corporate interest and
involvement with a consensus-driven approach to software development.

➢ We needed legal protection as well – what if someone decided to sue us
as individuals for something found in the code?

➢ We also needed a way to scale the project to be about more than just a
web server.

➢ Solution: a US-registered, 501c3 non-profit membership-based
organization, called the Apache Software Foundation.

➢ Members elect a Board, the Board appoints executive officers and
conducts oversight of the operations of the ASF.

➢ The ASF holds the right to redistribute work from contributors; including all
copyright, patent, and trademark rights.

➢What does the ASF do?

➢ The ASF cares primarily about developer communities. Good code will
come from effective, well-managed communities.

➢ 44 top-level projects, 1800 committers

➢ ASF spends a lot of time educating developers about legal aspects to
Open Source software: copyright, patents, contributions, etc.

➢ ApacheCon, a yearly ASF-produced conference.

➢ We give companies guidance on how to work with us – making clear
we're much more interested in developer involvement than cash
donations.

➢ Legal contributions from volunteer and corporate lawyers.

➢ However, the ASF maintains a clear separation between “church and
state” - companies have no formal role, it's all about the individual
developers.

➢ No paid staff. For better and worse.

The Tools We Need and Use
Key requirements:

Enhance transparency, archiveability

Work well over the wide-area network

Most important tool: mailing lists

Discussion is the most fundamental part of writing Open Source

Web-based discussion forums can also work

Make sure it is all archived, so decisions can be referred to later.

Second most important tool: a source code repository

CVS, the “Volkswagen” of version-control tools

Subversion, a modern replacement for CVS

Most other code versioning tools just are not suitable.

Issue tracking: Bugzilla, a bit of Jira

Wikis: probably the fastest way to get ideas on a page and organize them,
though real docs should be in HTML

Development Methodology at Apache

The ASF has a consensus-based approach

We make sure the communities are healthy, that there is involvement by
more than just one or two people in a project.

Minor decisions can be made quickly, major decisions require three +1
votes and no vetos.

Someone issuing a veto has to declare why they are vetoing and what can
be changed to address their veto.

Linux and others use the “air traffic controller” approach

One lead developer acts as a coordinator for the incoming contributions of
others.

Subdivision along functional lines – networking vs. disk drivers vs. memory
mgmt. Linus acts as a final check of something aggregated long before.

He also delegates maintenance of older releases.

Most other projects are somewhere between these two....

Development Processes Principles
● Release schedule is usually time-based.

● Ongoing active development, usually split between an active
development branch and a stable bugfix-only branch.

● Unless important bugfixes force a release, generally we look for
projects to make a point release once every few months.

● Feature set is “whatever gets done” - much like SCRUM

● Release date is usually preceded by a bug shake-out and a call for
testers.

● If a particular feature is not yet mature enough for wider use, it is
usually either disabled by default, or kept out of the next release.

● Think of this kind of management as similar to the way an investor
might manage a portfolio of investments... or how someone might try
to plan a really good party.

Community Management
Imperative #1: Be humble!

Treat other developers, even (especially) new developers, like peers to the
process.

Have respect for contributors – assume they are intelligent.

The most scarce resource in an Open Source project is developer
motivation, so it must be encouraged and cultivated.

Imperative #2: Be transparent!

Make decisions as a group, in front of the community.

Be responsive to challenges to the code, and don't take it personally.

Imperative #3: Think of the user community

It's too easy in an Open Source community to simply solve your own
needs, rather than think about the needs of the broader community.

Apache strives to be the neutral meeting ground for all developers no
matter who their employer is.

Addressing Corporate Involvement
● Most new Apache projects start as efforts of individuals,

but as they grow in importance, corporate involvement
helps attract a critical mass of developers and activity.

● Our “model” for involvement of corporations is to have
them fund specific developers, who then collectively
determine the best path forward.

● Those developers can then present their patches or
thoughts to their peers in the process, and defend them on
technical merits rather than on employer objectives.

● Since our focus is more infrastructural than whiz-bang, a
conservative approach works well.

● In essence the developers become “representatives”, but
they still are subject to the meritocracy.

Can This Work for Other Communities?

● First question to ask: start a neutral third ground like Apache, or
go with one tied to an existing corporation?

● If the developers feel a sense of ownership in the project, they'll
be loyal to it, they'll identify with it deeply and care about its
future.

● Such passion for the project as a whole is essential to
facilitating real collaboration – to put aside egos and agendas
and make the right decision for the community.

● Works best if you don't have to make promises to end-users,
but can be opportunistic about what is delivered. How? By not
trying to predict the future, but instead certify what you've got
today.

